Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate.
نویسندگان
چکیده
Recently, a new model for glutamate uptake by glutamate transporters was proposed based on crystal structures of the bacterial glutamate transporter homolog Glt(Ph). It was proposed that hairpin two (HP2) functions as the extracellular gate and that Na(+) and glutamate binding closes HP2, thereby allowing for the translocation of the glutamate binding pocket across the membrane. However, the conformation of HP2 in the apo state and the Na(+) bound state is unknown. We here use double site-directed spin-labeling electron paramagnetic resonance spectroscopy on the bacterial transporter Glt(Ph) from Pyrococcus horikoshi to examine conformational changes in HP2. Surprisingly, the cotransported substrates Na(+) and aspartate induce opposite movements of HP2. We find that in the apo state, HP2 is in a similar conformation as in the aspartate-bound closed state. Na(+) binding to the apo state opens HP2, whereas the subsequent binding of aspartate closes HP2. Our findings show that Na(+) binding opens and stabilizes the extracellular gate, thereby allowing for amino acid substrate binding. In contrast, in the absence of Na(+) and aspartate, HP2 closes, suggesting a potential mechanism for the translocation of the empty binding pocket necessary to complete the transport cycle. The finding that physiological Na(+) concentrations stabilize the open HP2 state would ensure that the outward-facing conformation of the transporter is maintained in physiological solutions and that glutamate transporters are ready to quickly bind glutamate released from glutamatergic synapses.
منابع مشابه
Is the glutamate residue Glu-373 the proton acceptor of the excitatory amino acid carrier 1?
Glutamate transport by the neuronal excitatory amino acid carrier (EAAC1) is accompanied by the coupled movement of one proton across the membrane. We have demonstrated previously that the cotransported proton binds to the carrier in the absence of glutamate and, thus, modulates the EAAC1 affinity for glutamate. Here, we used site-directed mutagenesis together with a rapid kinetic technique tha...
متن کاملCooperation of the Conserved Aspartate 439 and Bound Amino Acid Substrate Is Important for High-Affinity Na+ Binding to the Glutamate Transporter EAAC1
The neuronal glutamate transporter EAAC1 contains several conserved acidic amino acids in its transmembrane domain, which are possibly important in catalyzing transport and/or binding of co/countertransported cations. Here, we have studied the effects of neutralization by site-directed mutagenesis of three of these amino acid side chains, glutamate 373, aspartate 439, and aspartate 454, on the ...
متن کاملRefinement of the Central Steps of Substrate Transport by the Aspartate Transporter GltPh: Elucidating the Role of the Na2 Sodium Binding Site
Glutamate homeostasis in the brain is maintained by glutamate transporter mediated accumulation. Impaired transport is associated with several neurological disorders, including stroke and amyotrophic lateral sclerosis. Crystal structures of the homolog transporter GltPh from Pyrococcus horikoshii revealed large structural changes. Substrate uptake at the atomic level and the mechanism of ion gr...
متن کاملEvidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model.
Excitatory amino acid transporters (EAATs) remove glutamate from synapses. They maintain an efficient synaptic transmission and prevent glutamate from reaching neurotoxic levels. Glutamate transporters couple the uptake of one glutamate to the cotransport of three sodium ions and one proton and the countertransport of one potassium ion. The molecular mechanism for this coupled uptake of glutama...
متن کاملA Reentrant Loop Domain in the Glutamate Carrier EAAT1 Participates in Substrate Binding and Translocation
To investigate the structural determinants underlying transport by the glutamate transporter EAAT1, we mutated each of 24 highly conserved residues (P392 to Q415) to cysteine. A majority of these substituted cysteines react with the sulfhydryl-modifying reagent MTSEA, suggesting that they reside in an aqueous environment. The impermeant reagents MTSES and MTSET react with residues at each end o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 16 شماره
صفحات -
تاریخ انتشار 2011